In-Vitro Ventricular Assist Device Testing

Purpose:
- To mimic the normal systemic circulation of a young adult
- Simulate heart failure in the systemic circulation of a young adult
- To measure the effectiveness of a Ventricle Assist Device (VAD) in helping HF patients

Background:
Heart failure, a condition in which the heart can no longer pump enough blood to the rest of the body, affects 6 million people per year in the United States. Although a heart transplant is the best option, the need for donors exceeds the supply. A common alternative is the Ventricle Assist Device (VAD), which provides circulatory support for patients with HF. These devices can be used as right, left, or bi-ventricular assist pumps. To test these different devices before human trials, in the laboratory testing, also known as in-vitro testing, is needed. To get the most accurate results of device performance, a mock circulation of that closely mimics the human circulation is desired.

Method
In-Vitro Mock Circulation Setup
- Human circulation consists of multiple vessels of varying size and elasticity
- Used lumped element modeling to simplify vessel resistances and elasticity (compliances)
- Windkessel compliance chambers mimic elasticity of vessels
- Rubber tubing with clamps model vessel resistance
- To mimic the left ventricle, a Harvard Apparatus blood pump is used (pulsatile pump)

Results
Normal Mock Circulation
- In a normal mock circulation, the pressures and cardiac output are:
 - Ventricular: 0-120 mmHg
 - Atrial: 0-10 mmHg
 - Aortic: 80-120 mmHg
 - Cardiac output: 3.5 L/min

Modeling Heart Failure
- In HF, the pressures and cardiac output are:
 - Ventricular: 0-80 mmHg
 - Atrial: 10-20 mmHg
 - Aortic: 50-70 mmHg
 - Cardiac output: 2.5 L/min
- Two Tests: Unassisted and Assisted HF Model

Discussion
Normal Mock Circulation
- In the normal circulation, systolic pressure is 120 mmHg and diastolic pressure is 80 mmHg
- In this setup the aortic pressure is lower than expected
- The atrial pressure is larger than the normal range

Modeling Heart Failure
- Pressures of HF are not much different than normal circulation
- Cardiac output is lower for HF than normal circulation
- Improvement in cardiac output (flow rate) when the VAD is attached and driven in the HF mock circulation

Conclusion
The in-vitro model was in good agreement with normal human circulation. However, the HF model could be improved to better simulate systemic pressures in a patient with HF. Overall model could be improved by using viscous fluid and a constant temperature bath.

Acknowledgements
We would like to thank all of the SMARTS staff for letting us be apart of this program, and we would also like to thank John Valdovinos and the members from the Active Materials Lab for letting us be apart of his project.